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A radial basis function approximation is a linear combination of translates of a
fixed function @: #?— #. Such functions possess many useful and interesting
properties when the translates are integers and ¢ is radially symmetric. We study
the closely related problem for which the fixed function is the shifted Gaussian
@ =G(-—a), where G(x)=exp(—4 ||x|%) and ae %" Specifically, we exploit the
theory of elliptic functions to establish the invertibility of the Toeplitz operator

(p(a +J.*k)),:kef"

when a has no half-integer components; it is singular otherwise. This implies the
existence of a shifted Gaussian cardinal function, that is, a linear combination y of
integer translates of the shifted Gaussian satisfying () = d,;. We also study shifted
cardinal functions when the parameter 4 tends to zero. In particular, we discover
their uniform convergence to the sinc function when the shift vector « possesses no
half-integer components. Our methods are based in part on similar results estab-
lished by the first author when the basis function is the Hardy multiquadric. Several
intriguing links with the theory of shifted B-spline cardinal interpolation are
described in the finale. © 1996 Academic Press, Inc.
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1. INTRODUCTION

A radial basis function approximant is a linear combination of translates
of a fixed function, or some suitable limit of such approximants. Thus we
consider

s(x)=3 app(x—by), xe R, (1.1)

kezd

where (b;), ., is some fixed set of distinct points, or centres, in %9, and
(dx)y e »a 1s @ sequence of real numbers satisfying conditions ensuring (1.1)
is meaningful; for example, we might require the scalar sequence to be
finitely supported, or for the infinite series in (1.1) to be absolutely con-
vergent at every point x € #%. Such functions provide a flexible and useful
approach to multivariate interpolation (see, for example, the survey articles
[P, Bu3]). Much of the existing literature concentrates on the special case
when the centres form an infinite grid and ¢ is radially symmetric; we refer
the reader to the fundamental papers [ Bul, Bu2] of Buhmann on cardinal
interpolation. Here we study the closely related problem of shifted Gaussian
cardinal interpolation, which means that our typical approximant is

s(x)= > arp(x+a—k), xeR, (1.2)

kezd

where the shift « is a fixed vector in % and the function ¢(x)=
exp(—4 | x|3) is a Gaussian. We shall also allow the (positive) parameter
A to vary. First, let us recall that the cardinal function y, for the shifted
Gaussian must satisfy

Xoc(j) =50j’ jegd» (13)
where
L(X)=Y ¢r(a0) p(x+o—k), xe R (1.4)
kezd

Our main finding is that such cardinal functions exist when the shift vector
o has no half-integer components, the term half-integer connoting an
element of {4+ & in this paper, and we shall call such shifts admissible. The
technique is founded on analysis of the non-Hermitian Toeplitz operator

((p(“+j_k)j,ke:fd

using its close links with the theory of Jacobian Theta functions; these links
were also exploited by the first author in [ B1]. This analysis is to be found
in Section 2. In Section 3, we prove that admissibly shifted cardinal
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functions converge uniformly to the sinc function as the parameter 1 tends
to zero. Moreover, we also show that the admissibly shifted cardinal inter-
polants to a square-integrable function converge to this function in the
mean-square sense if and only if it is band limited. These studies indicate
that excellent accuracy can be attained when approximating band-limited
functions by shifted Gaussians if the parameter A is suitably small. We
suspect that this is mostly responsible for the favourable results found in,
say, the applications of Gaussian radial basis functions in neural net
problems (see, for instance [ BL]).

The methods employed in Section 3 are based in part on similar results
established by the first author in [ B2] when the basis function is the Hardy
multiquadric ¢(x) = (||x]|3 + ¢*)"/* and the parameter ¢ tends to infinity; we
discuss this connection in Section 4. Furthermore, our Gaussian researches
shed some light on shifted multiquadric interpolation, and these implications
are also outlined in Section 4. Finally, Section 5 describes the intriguing
parallels between the theory of shifted B-spline cardinal interpolation and
this paper.

2. SHIFTED GAUSSIANS, TOEPLITZ FORMS,
AND THETA FUNCTIONS

Let 1 be a positive constant, let ¢p: #Z > # be the Gaussian ¢@(x)=
exp(—Ax?), x € %, and define the shifted Gaussian ¢, (x) = ¢(x + «), where
o is a real number. We consider the bi-infinite Toeplitz matrix

A@) = (9u(j=k), e sn @€, 21)

as a linear operator on /*(%). The classical theory of Toeplitz forms (see
[W] or [GS]) studies A(a) via the symbol function

Goc(é) = G“(f, l) = Z (oa(k) CXp( _lké)a é € '%: (22)

ke

and we recall the well-known fact that A(«): I*(Z)— [* Z) is invertible if
and only if the symbol function does not vanish [ W, Theorem 1]. Following
[B1] we find that G, is a multiple of the Theta function

Hz)=9(z,q):= Y ¢¥z5, ze®\{0}, forge® and |q|<1. (23)

ke

Specifically, some elementary algebraic manipulation reveals the identity

G (&) =q"%g™e )  where g=e " (2.4)
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Thus the invertibility of A(a) is determined by the zero structure of the
associated Theta function. Therefore we present below some salient proper-
ties of Theta functions needed later in the paper.
LEMMA 2.1. The Theta function enjoys the infinite product formula
$2)=T(q) [ M+g* )1 +¢**'z7h,  ze@\{0},

k=0

where

T(q):=[] (1—¢*). (2.5)
I=1
Proof. See [ WW, Section 21.3; Be, Section 32]. ||

COROLLARY 2.2. The zeros of 9 are given by { —q':1e & odd}.

Proof. Equation (2.5) implies that (z) = 0 ifand only if 1 + ¢g* *'z*!' =0
for some non-negative integer k. |

PROPOSITION 2.3. The function {&w |9(q™e ©)|>:EeR} is even,

2n-periodic, and decreases for 0 < &< .

Proof. The function is evidently even and 2z-periodic. Furthermore,
(2.5) yields the infinite product

|9(q2“€7if‘)|2=T(q)2 n (1+q2k+1+2187i§)(1+q2k+l+2aeié)

k=0

2k+172xei5)(1 + q2k+172ace7i5)

X
—
—_
+

LS

:T(q)z n (1+2q2k+1+2acosé+q4k+2+4a)

X (1 +2q2k+172a cos f+q4k+274a)’ (26)

and we see that each of the terms in the final product is decreasing for
0<é<n |

PROPOSITION 2.4. RHqg*w)=0 when |w| =1 and o[ —1/2,1/2], with
equality if and only if w= —1 and a= +1/2.
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Proof. 1t suffices to prove this for 0 <a<1/2 because of the equation
9(q>*w) =9(¢**w). Now the Theta function is a conformal mapping from
the open annulus {ze%:¢<|z| <1} onto the domain whose boundaries
are the images under 9 of the boundaries of the annulus. It is shown in
[B1, Lemma 2.7] that 3 maps the unit circle {z€% : |z| =1} onto the real
interval [9(—1), 9(1)]. Thus it suffices to prove that RI(gw)>=0 when
|w| =1. But (2.5) supplies the expression

>

Y(qw) = 1—[ (1+ g% 2w)(1+¢*w)=(1+w) T(q

]—[ (14 g*w

whence RI(gw)=(1+Rw) T(q) [T, (1+¢*w)|?>0 with equality if
and only if w= —1. |

All the results obtained hitherto will be used in the sequel. We commence
with an invertibility theorem for A(a).

THEOREM 2.5. The symbol function G,, defined by (2.2), has no zeros
unless o is a half- integer Equivalenlly, the bi-infinite Toeplitz matrix A(a) of
(2.1) is invertible on 1*(Z) if and only if « is not a half-integer.

Proof. Corollary2.2 and (2.4) imply that the symbol function
G,(£,2)=0 if and only if 2« is an odd integer and e~ “= —1. The
equivalence follows from [ W, Theorem 1]. ||

This result was found independently by R. A. Rahim [R], whose tech-
nique was quite different.

Given the invertibility of 4(«) when a ¢ 1/2 + %, it is natural to consider
the condition number cond, A(a) := ||A(«)| | A(x) " for such « (the norm
used here is the operator norm on /*(%)).

THEOREM 2.6. Let a=o,+ 1, where |oy| <1/2 and [ is an integer. Then

20
cond, A(«) =9‘(9(_qq230). (2.7)

Proof. The spectrum of the bi-infinite Hermitian Toeplitz matrix
A(o)* A(a) is given by the range of its symbol function {|G,(&)|*:
—n<é<n} (see [W, Theorem1']). Therefore [A(a)* A(a)|=
max{|G,(&)|*: —r<&<n}, by [Bo, p. 175, Theorem 11(c)]. Furthermore,
[A(a)]|?= || A(x)* A(a)|| by [ Bo, p. 157, Theorem 2], which yields || A(x)| =
max{|G,(¢)|: —n<&<x}. Similarly [A(x) ' =max{|G,(&)]': —n<
&< n}. Thus
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max{ |G, (f)'fe[ m, 7]}

min{ |G fe[ m, ]}
{lG:x ée[—m n]}
{16, fe[ m, n]}

max{ |9(q 2“°W tweE, |w =1}
{1Hg>w)| : weE, |w| =1}

cond, A(a) =

max

1’1111’1

min

_ | %>

RS
by (2.2), (2.4) and Proposition 2.3. Finally, Proposition 2.4 entails the non-
negativity of $(+¢>*). |1

(2.8)

Equation (2.7) reflects the fact that cond, A(«) is a 1-periodic function of
the shift parameter a. Our next result shows that the condition number
increases as |a| grows from zero to half.

THEOREM 2.7. The function {a+>cond, A(a): —1/2<a<1/2} is even,
increasing on [0, 1/2), and tends to infinity as o tends to 1/2.

Proof. Theorem 2.6 and Lemma 2.1 provide the relations

cond A(a)z 9(q2m) _ ﬁ 1+q2k+1(q21+q72a)+q4k+2
2 3(_q2oc) i l_qzl"+1(q21+q72oc)+q4k+2

& 1+2¢77 cosh(24a) + g% 2 (29)
o 1=2¢% 1 cosh(27a) 4 g ¥ 27 '

and this last expression is clearly an even function of a. Further, each term
in the numerator of the product increases for 0 <o <1/2, whereas each
term in the denominator decreases for 0 <a < 1/2. Finally, as a tends to
1/2, the first term (k =0) in the denominator tends to zero. ||

It is interesting, but seemingly irrelevant, that the infinite product
obtained in (2.9) is a multiple of the Jacobian elliptic function dn.
We now take up the analysis of the semi-infinite Toeplitz matrix

A, () :=(@.(j—=k) k=0,  xEZR, (2.10)

viewed as a linear operator on /%(Z, ); here ¢ (x)=e ***®" and 1A%, )
denotes the sequence space {(d;)i=o0: 240 |@x|><oo}. The interaction
between the symbol function and the semi-infinite Toeplitz operator is
more subtle than in the bi-infinite case. We recall that a semi-infinite
Toeplitz matrix associated with a continuous symbol ¢ is invertible on
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I*(# ) if and only if ¢ is nowhere zero and the curve {a(7): — n<i<n}
does not wind about zero [ W, Theorem 5].

PROPOSITION 2.8.  Suppose o is not a half-integer. Then {G,(&): —n <
&< n} does not wind about zero if and only if || <1/2.

Proof. 1If |a| <1/2, then Proposmon24 yields RI(¢g*e~)>0 for all
Ee[ —n, nn]. Hence RG, (&) = ¢RI (g™ e ) is positive for all £ [ —x, 7];
a fortiori {G,(&): —n<E< n} does not wind about zero.

Conversely, let a=a,+1 where |0, <1/2 and leZ\{0}. Since
G,(&)=e"G, (&) by (22) and {G,,(¢): —n<E<m} does not wind about
the origin, we conclude that {G, (&) : —n <& <z} winds about zero exactly
[ times. ||

THEOREM 2.9. Suppose a€ R. The following are equivalent:

(1) ol <1/2;

(ii) G, is nowhere zero and the winding number of the curve {G, (&) :
—n<E<n} about zero is zero.

(i) The semi-infinite Toeplitz matrix A (o) defined in (2.10) is
invertible on 1*(Z,).

Proof. (i)<>(ii). This follows from Theorem 2.5 and Proposition 2.8.
(i) <> (iii). This is [W, Theorem 5]. |

We close this section with multivariate extensions of Theorems 2.5 and 2.6.
Let ¢ “(x):=exp(—4 |x]3), xe 2 >0, and let ¢'?(x):=@D(x+a),
ae #°. Consider the multivariate Toeplitz matrix (see [BM])

ADa) 1= (@ (j = k) e s oxe R, (2.11)

as a linear operator on /*(2“). The symbol function G'* of 4(«) is given
by

GE) =G NE 1) =Y, @P(k) exp(—ik"¢), Ee?. (2.12)

kezd

Clearly G'¥ is a tensor product of univariate symbol functions, to wit

BN

G(d) n o él é = (fl: ey éd)s o= (al 5 ey O(d)'

Consequently, Theorems 2.5 and 2.6 have multivariate analogues.
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THEOREM 2.10. The multivariate Toeplitz matrix A" defined in (2.11)
is invertible on 12(Z?) if and only if no co-ordinate of the vector shift
=10y, ..., ay) is a half-integer.

Proof. In view of (2.4) and Corollary 2.2, G(&) =0, &= (&), ..., &y), if
and only if 2a, is an odd integer and ¢, is an odd integral multiple of =
for some ke {1,..,.d}. |

THEOREM 2.11.  Suppose a=o,+ 1, where age(—1/2,1/2)¢ and le Z“.
Then
d 9(q20q)k)
cond, A (a) = —_—
? kl;[] '9(_612“0,()
Proof. The symbol function for A4““(a)* A“a) is {|GP(&)|*:¢e

[ -7, n]d} = {HZ:] |Gock(ék)|2 : f = (éla ceey fd) € [ -7, T[]d} The remainder
of the proof is a simple consequence of (2.8). |

—A

%o = (Xgps oo Xog)y g=6

3. SHIFTED GAUSSIAN CARDINAL INTERPOLATION AND
ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

Let 1 be positive and define the Gaussian ¢ ,(x) = exp( —ix?), x € %, and
its shift ¢, ,=¢,(-+a), ae#; we have changed notation slightly to
emphasize dependence on the parameter 4. We have seen that the symbol
function G,(-, 1) does not vanish when « is not a half-integer, in which case
we can define the cardinal function y, , associated with ¢, , by its Fourier
transform:

95400 )
1, (&) = G )’ EeR, (3.1)
where @, (&) =(¢,(-+a))” (). It is well known that
X).,oc(x): Z Ck(la O() go/l,:x(x_k)a XE%, (32)
ke
where
(A, a)=2m)"! r G, (& A) 7 exp(—iké) dé, kez, (3.3)
and

Xi,oc(j)zéoja JEEZ (34)



44 BAXTER AND SIVAKUMAR

The multivariate cardinal function y\”, is defined similarly by its Fourier
transform

A (d
29.(8) =G(”<(A fea (3.5)

provided the shift vector a is admissible, that is, none of its components is
a half-integer. (Here and elsewhere, (p“”)“( )= (p(‘”(x-f—oc) where (p(")( )=
exp(—4 [|lx]13), x, aeZ; also @' (&)= (o (-+a))" (&), and 21 (&) =
(){Sf”a()) ~(&).) In this section we shall study some properties of the linear
space

span{ ", (-—k):ke 2%}

as the parameter A approaches zero.

The function }?‘A"L defined in (3.5) inherits the tensor-product structure
from the Gaussian and the corresponding symbol. Precisely, we have the
useful relation

A

d
o=11 & g‘gf"% E=(Er ey a=(ors ). (36)

Primarily because of this tensor-product relation, all of the multivariate
results considered in this section can be derived from their univariate coun-
terparts. Therefore we address the univariate topics first.

Poisson summation provides a useful alternative formula for the Fourier
transform of the Gaussian cardinal function:

T &) =(1+E, (&), (3.7)

where

P, 2nk
.= 5 (Peelet2l)

Thoe 7200 e (3.8)
kez\{0} (ﬂ/l,a(é)

We shall often infer the behaviour of )6\0( from that of E; ,. It will also be
convenient to define E,=E, ,.

LEMMA 3.1.  We have the inqualities

|E, (OISE (&)= Y e (@rmr=ami seg, (3.9)

kezZ\{0}
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and
E; (&) <k(Ao):= ), e~ = IkD/20 for |&|<mand A<Ay.  (3.10)
ke Z\{0}
Furthermore,
ilint E; (&) =0, 1<l <, (3.11)

and the convergence is uniform on compact subsets of the interval (—=, n).

Proof. Inequality (3.9) is a straightforward consequence of the observa-
tion |¢, (&) =1¢,(¢)]. Moreover, we have the inequalities nk*+ &k >
nk* —|Ek| = n(k* — |k|) for every integer k and every & e[ —m, n]. Conse-
quently,

E,l(é) — Z e*(nkz—#ik)//l < Z e*ﬂ(sz |&1)/2 < Z 67”(1”17 \k\)/lo’
ke \ {0} ke 2\ {0} ke 2\ {0}

for A< 4,.
Turning to the pointwise convergence, suppose e (—mn, 7) is fixed. Let
&£>0 and choose a sufficiently large integer N so that

Y (k-
k| >N

Now we can also choose 4, <1 so small that

e

—((& 2_ g2
Y e, j <))
[kl<N

Thus we have derived the bound
Ei(é)gzga /lgllcéla

and, since ¢ >0 was arbitrary, we have established (3.11). The uniform con-
vergence on compacta follows from Dini’s theorem (see, for example,
[H, p.78]): If we have a monotonic decreasing sequence of continuous
real-valued functions on a compact metric space with continuous limit
function, then the convergence is uniform. |j

The asymptotic pointwise behaviour of 7, ., follows immediately from
Lemma 3.1.

THEOREM 3.2. If o is not a half-integer and & € (—n, n), then

lim 73 (E+2m) =0y, jeZ, (3.12)
A—0

and the convergence is uniform on compact subsets of (—mn, ).
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Proof. Equations (3.7) and (3.11) imply (3.12) when j=0. When j#0,
we have

—~ —~ D o +2 j —~ £ 2 £.
|X2,a(é +27[])| — |X/ﬁ,oc(é)| ‘M‘ |ef((g+27zj) 7@2)/42’

@A’“(f) :l){A,a(é)

which tends to zero as 2 — 0 because j, ,(¢) — 1 and (& + 2nj)> — &2 >0 for
|&| <m and j#0. Uniform convergence on compact subsets of (—mn, 7)
follows from that of E, ,(¢) and e~ (¢+2W" =4 g

Knowledge of the pointwise behaviour almost everywhere is not suf-
ficient for the integral limits studied below. However, Lemma 3.3, and its
consequence Corollary 3.4, will allow us to use the dominated convergence
theorem later. Once more the panoply of Theta function theory comes to
our aid, in particular the infinite product (2.5).

LemMma 3.3. Let g<q,<1 and let z=re", where re[q, ¢ '] and |t| <.
Then we obtain the inequalities

(1) [9(z, q)| = T(qo), lt| <m/2, (3.13)
and
(il)  19(z, q)| = T(q,)* sin* ¢, n2<|t| <m, (3.14)

using the notation of Lemma 2.1.

Proof. (i) When |t|<m/2, we have R(1+q¢**'r*'exp(+it))=1.
Hence every term in the infinite product (2.5) has modulus exceeding
one, which implies |H(q, z)| = T(q). Furthermore, T(q) > T(q,) for ¢<gq,,
yielding (3.13).

(i1) For k=1 and for any t € %, the triangle inequality provides
[l 4%+ ptleti) > g% > _qék,
because ¢ <r<g~'. Hence
19(z, @)1 = T(qo)*| (1 +gre™) (1 +qr~'e ™).

Now |1+¢r*!exp(tit)| =inf{|1 + p exp(£it)|: p=0} =[sin 7], the last
equation resulting from elementary geometry; this proves (3.14). |

The preceding result can be used to derive a upper bound on the Fourier
transform of the shifted Gaussian cardinal function. Specifically, if the shift
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o is not a half-integer, then the Fourier transform of the Gaussian cardinal
function takes the form

—~ @A a(f) 2rkio , —(n&[A)k , — k)2 ! —1
- _ ) — ko &/ 7 A :'9 ) .
X (&) S, G, (&4 2mk) /ZJ e e e (z,9)

(3.15)

where ¢ =exp(—n?/4) and z=q“" exp(2mia). Therefore the lower bounds
of (3.13) and (3.14) supply upper bounds for the modulus of 7, .

COROLLARY 3.4. Suppose o is not a half-integer; let 0 <A<, and set
go=exp(—n>/Ay), g =exp(—n>/2). There is a constant C(«, J,) for which

T2 OISClo )y A<hg, €< (3.16)

Proof. 1Tt suffices to restrict attention to ae(—1/2,1/2) because the
function {a+> |7, .| :ae 2} is l-periodic; for |a| <1/2, however, (3.16)
follows from (3.13) and (3.14) via (3.15). ||

Of course, C(a, 1y) > o0 as o — +1/2.
Armed with these results, let us introduce the family of linear spaces

V,:,a:={zam,ao—k):(ameyel%:f)}, i>0. (3.17)

keZ

The exponential decay of y, , for large argument implies the pointwise con-
vergence of the series for every square-summable sequence. In fact, as will
have been immediate to readers familiar with the theory of wavelets, every
V,. is a subspace of L*(#). More precisely, the integer translates
{(,..(-—k):keZ} form a Riesz basis for L*(2), as we now demonstrate.

PrOPOSITION 3.5. Suppose a is not a half-integer and 0 <A< A,. There
exist constants K, (o, 1y) and K, (o, o) for which

2
K (, 4o) Z |ak|2<

ke

Z ak){/l,oc('_k)

keZ

L)

SKs(a Zo) Y lael® (@i €1%(2). (3.18)

keZ

Proof. It suffices to prove (3.18) when the sequence (a;),., Iis
finitely supported, because such sequences form a dense subset of /%(Z).



48 BAXTER AND SIVAKUMAR

Setting A(&) :=>", ., a, exp(—ik¢) and applying the Parseval-Plancherel
theorem, we obtain

S =R =00 [ AP 17
kez LA(R) 7
=0 [T O T 17+ 2mh) e
- ke
Now

D 2
L '@(5+2ﬂk>lz=lm(é>|2<l+ y o |fenlet2mh) >
e cesiioy | Paall)

= 7O (1 +E;5(8)). (3.19)

Thus (3.10), (3.16) and Parseval’s theorem imply

2

Z ak)(z,a('_k)

kez

<C(°"/10)2(1+K(/10/2)) Z |ak|25

LX) ke

for A< A,. Finally, (3.7), (3.9) and (3.10) provide the inequality

e O1P=(1+x(A0) % El<m, A<,

whence the estimate

2

z ak%/l,oc('_k)

ke

>(1+x(20) 7 X lacl® A<,

LA(R) ke
obtains from (3.19) and Parseval’s theorem. ||

The foregoing result implies that the family of linear maps {7, ,:[*(Z)
- L*(R): 0 <A< A}, where

T;l,ot:(ak)ke:f'_) Z ak%i,a('_k)s

ke
is uniformly bounded. It follows that the image of V; , under the Fourier
transform % is given by the succinct expression

—~

Via=10 L[ —n 7], (3.20)

being the composition & o T, (V. ,). That is, every member of V . 1S an
element of L*[ —n, 7] multlphed by ... (Here we are usmg the
Riesz-Fischer theorem to pair /*(%) and L*[ —x, n] via the Fourier coef-
ficient sequence.)
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Now (3.12) implies the limiting relation

lim V“( {feLX#):f issupported by [ —7, n]}zzc/o‘”;. (3.21)

A—-0

We have chosen the notation &, because its inverse Fourier transform &, is
precisely the set of entire functions of exponential type z; this is the
celebrated Paley—Wiener theorem (see, for instance, [ SW, pages 108ff]).
Thus it is natural to ask whether V/ ,— &, in some sense, and the answer
to this question is particularly elegant in L*(#). We shall need a specific
form of the Poisson summation formula.

LEMMA 3.6. Let f€é&, and define the continuous function fe L*(R) by
the inverse Fourier transform

f(x) = (27) ! f” A& e ds,  xed. (3.22)

—7

Then we have the equation

Y fE+2mk)=Y f(k) exp(—ikE), (3.23)

kez kez
the second series being convergent in L*(R).
Proof. See, for instance, [ B2, Lemma 3.27]. ||
As an immediate corollary of Lemma 3.6, we find
Y fUP=0n [ A1 de < . (324)
keZ -

Therefore the function

Lo fi=% fU) 1.~k (3.25)

kez
is an element of V, ,, by Proposition 3.5, and its Fourier transform is given
by

LA =706 Y fU)e ™ =773(6) Y, f(&+2mk). (3.26)

keZ ke

THEOREM 3.7. Let feLz( ). If the shift a is not a half-integer, then
lim, ,,dist,(f, V, .,) =0 if and only if fe€é&,.
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Proof. Suppose f € &,. We shall prove that lim, , | f— Lo fll 20 =0,
which is equivalent to lim;_ ||/ —1,,fl,2, =0 by the Parseval-
Plancherel theorem. Letting / denote the characteristic function of the
interval [ —z, 7], we have

2

1) — 75O dé

/=L f V=] | T J(&+2mk)
2\ kew

G RIEMEIRS

S IRLC R N AC AR

ke 2\{0}

=:Il+12' (3.27)

Now (3.16) implies | /()1 |1 =7, 5(E)> < | A&7 (14 Cla, 29))* for
|| <n and A< 1,. Further, f is square integrable on [ —=n, 7] and
lim, ,|1— @(f)PzO by Theorem 3.2. Hence the dominated con-
vergence theorem implies /; - 0 as 1 — 0.

For I,, Lemma 3.1 provides the bound

P, (& + 2k)

L=[ 1P m(én{ P TS }df

- ke \{0}

<A 20l [ O Ernl) de.

Now E;;, (&) <k(40/2) for /<4y by (3.10), and lim;_,, E,,({) =0 for
every (e(—m, ). Hence a second application of the dominated con-
vergence theorem implies /,—»0 as A—0, and we have shown that
lim, _, , dist,( f, &,)=0.

Conversely, assume lim;_ ,dist,(f, V,,)=0 and choose functions
f,€V,, for which lim,_ o [ f—f;[l ;24 =0. Using (3.20) we obtain the
representation

L= 4,8, e, (3.28)

where each 4 is a 2z-periodic function square-integrable on [ —7, 7]. We
shall show that

F(d
Py

lim | /(& +2mj)| dE=0

=0 Y7

for every nonzero integer j, which implies f e &.
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Now (3.28) and the Cauchy-Schwarz inequality provide the relations

Jn |}:(f + 277)| df:ji |]/f;(é)| o~ (E+2m)2 = E)/4z e

N T
<ol g (j

However, Hf/IHLZ[fn, RS Hf”LZ(%)‘i' "fl_f|‘L2(.%’)= H.f"Lz(,«%)+0(1)9 as
A— 0, whereas direct calculation implies

1/2
e~ (& +2m) —&)/22 dé) )

U1

lim [ e (2P -DRige 0, e\ {0}.

A—=0J _x

Hence

lim [ |f(6+2m)| dé=0, jez\{0}.

A—>0J_5

But the triangle inequality and a second application of Cauchy-Schwarz
now reveals

| " 1feramlde <" 1+ 2mn =T+ 2ml de

—7

+[" T ram) e

<202 | = fill 2wy +o(1) =o(1),
as A — 0, which completes the proof. ||

An almost identical argument yields a result on uniform convergence.

THEOREM 3.8. Suppose fe /(o‘; The functions {I, ,f:7>0} converge
uniformly to f as A — 0.

Proof. Let g and E; be given by (3.23) and (3.9), respectively. We have
the relations

| oS de= ] 17 18] de

_J < 7 f+2nk)|> 1g(&)] de. (3.29)
T \keZ
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Since geL’[ —m,n]lcL'[—n, 7], and X, , [7; (& +27k) = |7,(S)
(1+E,(8)eL”[ —m, =] by (3.16) and (3.10), equation (3.29) implies that

I, . feL' (). So the Fourier inversion theorem yields the equation

S =1 fx) =) |

R

T e | (6 - 76 explind)
keZ

where I denotes the characteristic function of the interval [ — 7z, z]. Conse-
quently,

)~ 1, S
<o [T 3 e 2k - 2] | d

- ke

=0 [T AN - 7))

-7

wem [0l T i | de

- ke \{0}

4L, (3.30)

and the similarities between (3.27) and (3.30) are evident.

For I, we note that lim; _, (1 — 5, ,(¢)) =0 for |¢| <7 by Theorem 3.2,
and |1 —m(éﬂ <1+ C(a, 4y) for A<, by (3.16). Moreover, f is
absolutely integrable on [ —=m, n]. Thus the dominated convergence
theorem allows us to conclude that lim, , 7, =0.

For I,, we have

Y G EH2mk) = 10O EE),  Ce[—mm]. (331)
ke 2\{0}
Now |)a\1(f)| E; (&) is bounded for 1 < A, and |¢] <z by (3.10) and (3.16).
Further, E,(£) converges to zero for || <z by (3.11). Once more the
dominated convergence theorem implies I, > 0 as 1 — 0. |

One noteworthy consequence of this theorem is the uniform convergence
of the shifted Gaussian cardinal functions to the sinc function as 4 tends to
zero: we simply let f be the sinc function, namely f(x)=sin(zx)/(7x).

Proceeding now to be multivariate case, we recall that a vector shift
a=(ay, .., a,) € R is said to be admissible if no «, is a half-integer. We
have seen (cf. (3.6)) that the multivariate cardinal function x!?, is simply a
tensor product of univariate cardinal functions, that is

d
X(At,{zx(x): l_[ Xi,ak(xlc)> x:(xl’ () xd)e'%da (332)
k=1
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or, in the Fourier transform domain,

d
20 =T 7wl E=(&, e’ (3.33)

k=1

These relations imply that the multivariate analogues of our univariate
results require rather simple modifications. Therefore we shall only sketch
further development.

Equation (3.33) implies the multivariate form of Theorem 3.2:

lim 749 (£ +2mj) =9, jeZ9 Ce(-mn) (3.34)

LA—0

the convergence being uniform on compact subsets of (—z, )% Similarly,
the shifts {y'")(-—k):ke2“} form a Riesz basis for L*(#?), so general-

Ay 0

izing Lemma 3.11. Thus the linear spaces
VS.,dez{ Z akx()illc(._k):(ak)ke&”jelz(gd)}a }'>03 (335)
kezd

are subspaces of L*(#“) for every admissible shift. Following (3.21), we
introduce

ED = {fe L% : f is supported by [ —7x, 7]}, (3.36)

and observe that every f e &'“ possesses an interpolant

I, f= % flk) 1. —k)

kezd

that is a member of V'{”,. The multivariate incarnations of Theorem 3.7
and Theorem 3.8 are then as follows.

THEOREM 3.9. Let feL*(%“). If aec R is an admissible shift, then
lim, o disty(f; V) =0 if and only if fe&'".

TueoreM 3.10.  Suppose fe &', The functions {1, f: >0} converge
uniformly to f as 21— 0.
4, SHIFTED MULTIQUADRICS

Let ¢ be a non-negative constant. The shifts of the Hardy multiquadric
@.(x)=(x*+c?)"?, x e R, generate bi-infinite multivariate Toeplitz matrices

A(O()::((pc,oc(j_k))j,ke,i}.‘” O(E%, gﬂc,oc(')::goc('-i_a)a (41)
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which do not act as linear operators on /%(%). However, it is still possible
to analyze their behaviour via the associated tempered distribution symbol
function. In particular, it is shown in [ B1] that

PO = =] e R e, ce\[0), (42)

where
0.(x)= +f e )tV du(t),  xea, (4.3)

and it is easily checked that the positive Borel measure u is given by
du(t) =exp(—c*t)(4nt) "'* dt. Thus the symbol function for A(a) is the
sum of tempered distributions

0 d&)= T pealr2mh)= =] GuE N dulr). (44)

keZ
using the Poisson summation formula
(/)2 Y ef(é+2nk)2/4teioc(é+27zk):Gx(f, ). (4.5)
keZ

If a is not a half-integer, then RG, (¢, ¢)>0 for every t€(0, o), by
Proposition 2.4. Thus Ro . (&) <0 for all £eZ and, following [ Bu2], we
can define the cardinal function by its Fourier transform

Zeall) =0 a(Q))o..(E), CeR, adl2+Z, (4.6)

because the denominator does not vanish.
Formulae (4.2) and (4.3) admit multivariate analogues (see [Bl]);
specifically,

PO = —[ " e g\ {0}, (47)

where the measure du(t) is given as before. Consequently the multivariate
symbol a(") can be expressed as

o (& f GE )t dulr),  aeR, (4.8)

where G\ is the multivariate Gaussian symbol defined in (2.12).
In fact, (4.7) and (4.8) are valid for a large subclass of conditionally
negative definite functions of order one; see [ Bl, Theorem 3.6]. However,
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we prefer to concentrate on the single concrete example of the multiquadric
in this study.

Now suppose a=(a,, ..., &) is an inadmissible shift, so that some com-
ponent, o, say, is a half-integer. Then for every ¢>0, G'(&, 1)=0 when
&, an odd integral multiple of 7 (see Theorem 2.11). Therefore ¢'*) (&) is
also zero for such « and ¢&, by (4.8). Conversely, if « is an adm1551ble shift
and ¢e(—mn, )% then RG(E, 1) is no longer positive for all 7> 0. So,
unlike the univariate case, we cannot conclude that ¢\”, (&) #0 for such &
and «. However, it is interesting to note that for a fixed & e (—n, n)? and
an admissible shift o, there exists a &:=¢(¢) such that ¢'?), (&) #0 for all
¢ >=¢. For, we have the relations

2nk)
@ (& +21k) = ') <1 PeialC + 2mk) > 49
keZﬂ(/) (&+27k) =L (&) +k61;\{0} (e (4.9)
and
(pﬁd;(é+27zk)‘ @ Do(E + 2k p
- o 4.1
P () o |0 k7 (4.10)

Since (see [ B2, Equation 2.2)])

nd/z

mcd+1 LC’“ e,cs\\él\z(sz_l)d/zds>0’ (4.11)

1o (&) =

and (see [ B2, Equation (2.5)])

(d)
. goc O(f+27[k)‘ 4 d
lim 1 =0, te(—m, )", (4.12)
¢ keZ‘Z\{O} (/’(plo(f)
Equation (4.9) provides the estimate
lai.()] >0, (4.13)

for large c.

Knowledge of the exact zero structure of the multivariate symbol ')
eludes the writers at present, and for the duration of the section we shall
assume o =0; that is, discussion will be restricted to the unshifted multi-
quadratic ¢'?.

In Section 3 we studied several convergence properties of Gaussian car-
dinal interpolants by allowing the parameter A to tend to zero. Comparable
results for multiquadrics can be obtained by allowing the parameter ¢ to
tend to infinity, as was first observed in [ B2]. The following results supple-
ment the ones already proved therein; the proofs of these results are similar
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to those in Section 3 and are omitted. However, it is important to under-
stand that relation (4.11) provides the crucial inequality

@““(f)‘
0 <exp[ —c([IE] —lInl)],
59 () pl 1€l —1[l71)]
when [ &[> [|7]] > 0.
LEMMA 4.1. Let
A (d)
)?(cd)(f) P (é) 66%“’.

et §U(E+ 2mk)”
Then

lim 79 +2m) =8y Ce(-mm)  jeZ?,

C— O

and the convergence is uniform on compact subsets of (—mn, m)“.

THEOREM 4.2. Let

V(Ld) :2{ Z akXi:d)('_k) : (ak)ke&"dEIZ(gd)}'

kezd

Then V@ < L2 (%) for c¢=c,. Furthermore, if fe L RY), then

c

lim dist,(f; V') =0 if and only if [ is zero almost everywhere outside

c— 0

[—7n, ]

5. CONNECTIONS WITH CARDINAL SPLINES

As indicated in the introductory section, there are several strong sem-
blances between the theory of Gaussian cardinal interpolation (as studied
in this paper) and cardinal-spline analysis. These connections will be
brought out below.

Suppose n =2 and let M, denote the centred cardinal B-spline of order n,
i.e., M, is the n-fold convolution of the characteristic function of the interval
(—1/2,1/2) with itself. Define o, , to be the shifted B-spline symbol

O-n,a(é) = Z M,l(k+0() eXp(—lkf), &, éeg

ke

In complete analogy with Propositions 2.3 and 2.4 of the present paper, we
have the following results concerning o, ,: For fixed n and «, the function
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{&—0, (&) £e R} has non-negative real part, and its modulus |, ,(&)]
decreases on the interval 0 < ¢ <. The first of these results follows quite
easily from [JRS, Proposition 3.1], whilst the second was established in
[JRS, Theorem 3.2]. Furthermore, Theorem 2.5 of the present paper also
holds for the bi-infinite Toeplitz matrix generated by the shifted B-spline
([M] and [BS]); indeed, the zero structure of the shifted B-spline symbol
0, 4(&) is precisely the same as that of the shifted Gaussian symbol
G, (&, 1) (compare Theorem 2.5 of this paper with Theorem 2.2 of [ S]). As
for semicardinal interpolation, our Theorem 2.9 for shifted Gaussians is
an exact analogue of the corresponding result for shifted B-splines; the
latter may be derived as a consequence of [JRS, Proposition 3.1], via
[ W, Theorem 5].

It was shown in [deB, Theorem 1] and [JRS, Theorem 3.4] that for
fixed ¢ and n, the even function {ar |g, ,(&)|:ae 2} decreases on the
interval 0 <a < 1/2. We now prove an entirely analogous theorem for G,.
It is interesting to note that, in stark contrast to the B-spline results, the
result for the Gaussian (vide infra) is a simple extension of our earlier
analysis.

PROPOSITION 5.1.  The function {or> |G, (& A)| e Ry is  even,
1-periodic, and decreases on 0 <a<1/2 for every fixed E€ R and 1> 0.

Proof. That |G,(&, A)| is an even, l-periodic function of a is a ready
consequence of (2.2). Moreover, the Poisson summation formula implies

Ga(f, 2)= z ef/l(k+g¢)2e—ikéz(ﬂ/)\‘)l/z z e7(5+27zk)2/(4/l)eiot(§+2nk).
keZZ ke

Setting £ =:2ny and ff :=2na, we obtain

(n/i)lﬂefi/hy z ef(nz/i)(rerk)zefik/z’
keZ

G, (¢ 2)
=(n/2)"? e "G, (B, n°/2)
:(n/l)l/Ze*i/)’fye771217/23(67271217/287%’ eﬂz%)’

by (2.4), and hence

(Gal&, 2)] = (mf2)'2 &7 |9(e =21 18, =)
We have shown in Proposition 2.3 that {f [9(e 27 e~ ¢~ "/*)| : 0 <
p<m} is a decreasing function for every fixed 7€ % and A > 0. Therefore

the function a+— |G, (&, 1)| decreases on 0 <a<1/2 for every fixed e X
and 2>0. |
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A prominent theme in the study of univariate cardinal splines has been
that of convergence of cardinal spline interpolants as the degree of the
underlying spline tends to infinity. Attempts to extend this theory to multi-
variate splines have led to several interesting results (see, for example,
[BHR2, Chapter5]), including some fascinating connections with
problems of tiling [ BH]. The studies reported in Sections 3 and 4 of our
paper, as well as those carried out in [ B2], reveal that the notions of “4
tending to zero” in Gaussian cardinal interpolation and “c tending to
infinity” in multiquadric interpolation are natural counterparts of the
notions of “degree tending to infinity” in cardinal-spline analysis. As a
sample, the reader is invited to compare Theorems 3.13 and 4.2 of the
present paper with the main theorem in [ BHR1].
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